• Start with reviewing Past Exam papers to see what I should expect.
  • Last two lectures
  • [ ]
  1. Intro
  2. Linear Classifier and Perceptrons
  3. Perceptron Learning Max Margin Classifier
  4. Soft Margin SVM
  5. ML Abstractions
  6. Decision Theory / Risk Minimization
  7. GDA, QDA, LDA, MLE
  8. Eigenvectors and Anisotropic / Visualizing Quadratic Form
  9. Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA, Centering/ whitening/ decorrelating
  10. Regression
  11. Newton’s method, ROC Curve
  12. Statistical Justifications; the Bias-Variance Decomposition
  13. _Shrinkage: Ridge Regression, Subset Selection, and Lasso